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Abstract This article describes a practical approach for

evaluating the uncertainty of results for determinations of the

adiabatic (corrected) temperature rise in isoperibol calo-

rimetry. The methodology is firmly based on the recom-

mendations of the Guide to the expression of uncertainty

in measurement (GUM). Although developed for a specific

modification of the Regnault–Pfaundler method, the

approach is sufficiently general to make it applicable to

virtually any other scheme for the evaluation of temperature–

time curves in temperature-rise calorimetry.
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Introduction and background

This study was carried out in support of the development of

a new Rossini-type [1–3] combustion calorimeter in the

framework of a Groupe Européen des Recherches Gazières

(GERG) project. Schley et al. [4] presents the concept and

design of the calorimeter, the main measurements and the

data evaluation. In all developments—calorimeter, mea-

suring system, data acquisition and evaluation—the con-

sideration of uncertainty sources has been an integral part,

and the article gives due account of that.

A major application of the new calorimeter will be high-

accuracy measurements of the superior calorific value

(SCV) of natural gas components, in particular methane,

ethane, propane and other hydrocarbons, with the goal to

establish a new collection of SCV reference data with the

best possible and well-established uncertainty. Such ref-

erence data would among other things significantly

improve the calculation of the SCV of natural gas from

composition according to the International Standard ISO

6976 [5]. The uncertainty of the calculated SCV is deter-

mined by the uncertainty of the component SCVs and the

uncertainty of the composition, i.e. the component mole

fractions. Due to the lack of reference data with adequate

uncertainty for hydrocarbon SCVs, current uncertainty

calculations are restricted to composition uncertainty, with

the obvious consequences of (i) underestimation of

uncertainty, (ii) lack of traceability and (iii) lack of com-

parability with results of direct measurements of natural

gas SCV. Further information is given in [4].

Concerning the uncertainty of calorific value measure-

ments, to date guide to the expression of uncertainty in

measurement (GUM)-compliant uncertainty statements,

based on a comprehensive uncertainty budget, have been

the exceptions than the rule. Two such exceptions are given

in [6, 7]. Alexandrov [6] describes the development of an

isothermal gas calorimeter, designed for a new measure-

ment method, and includes a comprehensive uncertainty

budget, which is then applied to measurements of the SCV

of methane. Because of the totally different measurement

principles—heat compensation measurement instead of

temperature-rise measurement—this study could not draw

any benefit from these results. In contrast to that, the cal-

orimeter treated in [7] is of the same type as the GERG

calorimeter, and the measurement principles are essentially

the same. The article reports the results of measurements of
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the SCV of methane including a standard uncertainty cal-

culated from various input uncertainties. However, no

details of the uncertainty budget are given, and in partic-

ular, there is no information concerning the evaluation of

the uncertainty of the adiabatic temperature rise.

The uncertainty of the calorific value of a gas sample

measured with the GERG calorimeter is a combination of

uncertainties of various different measurements, including

those of

• The adiabatic temperature rise in sample combustion,

• The adiabatic temperature rise in electrical calibration,

• The sample mass,

• The mass of unburned gas,

• The amount of energy in electrical calibration.

Each of these uncertainties in turn has a variety of input

uncertainties. In order to deal with all of them, the

uncertainty budget of the calorific value is decomposed

into sub-budgets, following the breakdown of the mea-

surement equation into a sequence of equations for the

evaluation of the various constituent measurements.

Among all these measurements and uncertainty budgets,

that of the adiabatic temperature rise stands out as being

specific to this type of calorimetry and applicable to other

measurements in this field. Therefore, a separate publica-

tion was decided. The complete uncertainty budget for the

measurement of the SCV of methane and other hydrocar-

bons will be published elsewhere.

Determination of adiabatic (corrected) temperature

rise

Notation

Table 1 specifies the symbols attributed to the basic quan-

tities. Evaluation of measured temperature–time data eval-

uation proceeds by specifying the instants tini,e and tfin,s, next

evaluating the parameters Tini,e, Tfin,s, k, T? and H, and

finally calculating DTex and DTad. By default, the symbols

Tini,e, Tfin,s, k, T?, H, DTex and DTad will be used in a generic

sense: description of the mathematical model, and in a

specific sense: for values obtained by the dedicated evalu-

ation described in this article. Only when such values are

compared with values obtained by an alternative evaluation,

an appropriate qualifier is added. For example, k[sim], k[ini]

and k[fin] specify values of the cooling constant obtained

from the same data by different evaluations: simultaneous

regression of the data in the initial and final periods, separate

regression of the data in the initial period, and separate

regression of the data in the final period, respectively.

Similarly, DTad[ded] and DTad[alt] specify results obtained

from the same data by the dedicated procedure and an

alternative procedure.

Model of isoperibol temperature rise

The basis for the determination of the adiabatic temperature

rise is the model of what has been called an ‘‘ideal isoperibol

temperature-rise calorimeter’’ in a recent publication [8].

Departures from this model are treated as uncertainty sour-

ces. The calorimeter is treated as a single body with a spa-

tially uniform but time-dependent temperature T(t),

exchanging heat with an environment (a water jacket with

active temperature control) at a uniform, constant tempera-

ture TJ. The rate of change of the calorimeter temperature is

governed by a modification of Newton’s law of cooling:

_T tð Þ ¼ uM tð Þ þ ustir þ k TJ � T tð Þð Þ: ð1Þ

Here we have used the common shorthand notation _X for

the derivatives dX/dt with respect to time. The first term on

the right-hand side of this equation, uM(t), is the rate of

temperature change due to heat production by the com-

bustion of a gas sample or electrical heating in a calibration

run. These processes are confined to a specified period

[ton B t B toff], and thus uM(t) is assumed to be zero out-

side this interval. The second term, ustir, is the rate of

temperature change due to heat production by the stirrer

and any other heat source with constant power. This energy

input is assumed to be constant during the entire experi-

ment, and thus ustir is assumed to be constant. Finally, k is

the cooling constant of the calorimeter with respect to

thermal leakage from the jacket.

Table 1 Symbols for basic quantities

Symbol Quantity

t Time

tini,e Specified end of the initial period (start of the main period)

tfin,s Specified start of the final period (end of the main period)

T Temperature

Tini,e Calorimeter temperature at tini,e

Tfin,s Calorimeter temperature at tfin,s

TJ Temperature of the calorimeter environment (jacket)

T? Convergence temperature of the calorimeter

DTad Adiabatic (corrected) temperature rise

DTex Exchange contribution to temperature rise (transfer from

the jacket)

k Cooling constant

uM Rate of temperature rise due to heat production by

combustion or electrical heating (taking place in the main

period)

ustir Rate of temperature rise due to heat production by stirring

H Integral of the temperature-rise curve in the main period
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If left for a long time, t � toff, the calorimeter will reach a

final temperature T? above the jacket temperature. This is

given by the requirement limt!1 _T tð Þ ¼ 0 ¼ ustir þ
k TJ � T1ð Þ which relates the term ustir to the difference

between the convergence temperature T? and the jacket

temperature TJ. Substituting this expression into Eq. 1 gives:

_T tð Þ ¼ uM tð Þ þ k T1 � T tð Þð Þ: ð1aÞ

In the initial period [t \ ton], the term uM(t) is zero, and the

solution of Eq. 1a is given by:

Tini tð Þ ¼ T1 � Cini exp �ktð Þ: ð2Þ

The integration constant Cini is obtained by specifying an

arbitrary point (tA, TA) on the temperature–time curve of

the initial period. Then

Tini tð Þ ¼ T1 � T1 � TAð Þ exp �k t � tAð Þð Þ: ð2aÞ

Likewise in the final period [t [ toff] the solution of Eq. 1a

is obtained as:

Tfin tð Þ ¼ T1 � T1 � TBð Þ exp �k t � tBð Þð Þ: ð2bÞ

where (tB, TB) is an arbitrary point on the temperature–time

curve of the final period.

The target quantity in the evaluation of temperature-rise

data, the adiabatic (corrected) temperature rise, i.e. the

temperature rise which would have occurred if no thermal

leakage to the environment (jacket) had taken place, is

given by the integral of the rate of temperature change due

to heat production by the combustion of a gas sample or

electrical heating in a calibration run

DTad ¼
Ztoff

ton

uM tð Þdt ¼
ZtB

tA

uM tð Þdt; ð3Þ

where [tA B t B tB] can be any interval including

[ton B t B toff]. Solving Eq. 1a for umain(t) and

substituting this expression into the integral on the right-

hand side of Eq. 3 gives:

DTad ¼ T tBð Þ � T tAð Þ � k

ZtB

tA

T1 � T tð Þð Þdt

¼ TB � TA � DTex: ð3aÞ

In this equation, DTex is the temperature rise between tA
and tB due to (i) the heat exchange between the calorimeter

and the jacket and (ii) the constant thermal power input

from the stirrer and possibly other sources.

Data evaluation

Using Eqs. 2a, 2b and 3a, measurement series of temper-

ature–time points (t0, T0), (t1, T1), (t2, T2), …, (tN, TN) are

evaluated as follows:

(a) As a first step, an initial time tini,e and a final time tfin,s

well outside the ‘‘activity’’ period [ton B t B toff] are

chosen as conservative estimates of the upper limit of

the initial period and the lower limit of the final

period, respectively. How this is done will be

described in the next section. Accordingly, the

intervals [t B tini,e], [tini,e B t B tfin,s] and [t C tfin,s]

define the initial period, the main period and the final

period.

(b) Next, a simultaneous fit is performed of a function

according to Eq. 2a to the data of the initial period,

{(ti, Ti), t0 B ti B tini,e}, and a function according to

Eq. 2b to the data of the final period, {(ti, Ti),

tfin,s B ti B tN}, using the same parameters k and T?.

This computation, carried out by ordinary (i.e.

unweighted) least-squares regression, yields the

values of k, T?, Tini,e and Tfin,s.

(c) Then the data of the main period, {(ti, Ti), tini,e B

ti B tfin,s}, are evaluated by numerical integration, to

compute an approximate value of the integral H

H ¼
Ztfin;s

tini;e

T tð Þdt: ð4Þ

Integration is carried out according to the Simpson rule,

based on quadratic interpolation.

(d) Finally the adiabatic temperature rise is computed as

DTad ¼ Tfin;s � Tini;e � kT1 tfin;s � tini;e

� �
þ kH: ð5Þ

The GERG project included a systematic investigation of

twelve evaluation methods, arising from the two basic

strategies, integration (Regnault–Pfaundler) and extrap-

olation (Dickinson/Challoner), by varying the subsequent

steps:

• Initial and final periods Exponential fit versus approx-

imate linear fit, separate fit versus simultaneous fit,

• Main period Integration by the trapezoidal rule, inte-

gration by the Simpson rule, equal areas method.

Among these alternatives, the method specified above

showed the best performance, among other things with

respect to minimising the dependence of the result on the

definition of the main period. As another recent publication

devoted to this topic, we would like to mention [8],

describing an approach for improving the accuracy of

evaluations of the adiabatic temperature rise according to

both the integration (Regnault–Pfaundler) and extrapola-

tion (Dickinson/Challoner) method, based on a comparison

between an exponential-function description of the data in

the initial and final periods and an independent third-order

polynomial fit. In addition, a dedicated software applica-

tion Labtermo is introduced.
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Supplementary information

This section gives a brief description of (i) the current

design of the temperature–time measurement for a run on

the GERG calorimeter, (ii) how the limits of the main

period are defined and (iii) the tools used for data

evaluation.

Combustion measurement design: Before starting a

combustion run, the calorimeter is cooled to 22.5 �C and

the temperature in the water jacket is set to 27.0 �C. After

equilibration of about 2 h, the initial period is started and

continued for about 1 h. When the calorimeter temperature

has reached 23.48 �C, the argon/oxygen flow is turned on

(tini,e). Some 4–5 min later, when the calorimeter temper-

ature has reached 23.50 �C, sample gas flow and ignition

are started simultaneously (ton). Combustion is continued

for about 30 min, until the mass of sample gas has reached

1.0 g, resulting in a temperature rise (of about 3 K) to

about 26.5 �C. Immediately after the extinction of the

flame (toff), the argon/oxygen flow is stopped. After a

transition period where the combustion energy is dissi-

pated, typically some 30 min, the final period begins (tfin,s)

and continues for about 1 h. The current standard scheme

is: equilibration 8,000 s—initial period 4,000 s—main

period 4,000 s including a combustion period of 1,500 s—

final period 4,000 s.

Calibration measurement design: Calibration runs are

designed to match the respective combustion runs as clo-

sely as possible, including, e.g. carrier gas flow.

Temperature is measured with a fast-response thermistor

sensor. Temperature readings are recorded every 2 s, where

each reading is in fact a mean of 2 9 104 single values.

Figure 1 shows a plot of a typical data series. At this level

of resolution, combustion curves and calibration curves

look alike. Higher resolution reveals some characteristic

differences (e.g. an overshoot of the calibration curve at the

end of the heating period) which are, however, not relevant

for the purpose of this article.

Definition of the limits of the main period: In theory, the

adiabatic temperature rise should be independent of the

definition of the limits tini,e and tfin,s of the main period,

provided that the interval [tini,e B t B tfin,s] completely

includes the ‘‘activity period’’ [ton B t B toff] where

uM(t) = 0. In practice, things are not that easy, and care has

to be taken to ensure that there are no perturbations of the

temperature rise in the initial and final periods. Therefore,

the lower limit tini,e is defined by the instant when the argon/

oxygen flow is turned on (external perturbation). Choosing

an earlier instant has no effect on the results for the adia-

batic temperature rise. Similar considerations apply to the

definition of the upper limit tfin,s, concerning internal per-

turbations. After the combustion is finished, the dissipation

of the released energy requires considerable time, until the

system has returned to a state obeying Eq. 2b.

A recognised criterion for the choice of the upper limit

was given in [9]. The procedure starts from a set of points

which are considered to be definitely within the final period.

These are fitted to a least-squares regression line (a straight-

line approximation to the exponential curve). Then the

starting set is extended by prior points, and new regression

lines are computed, until the candidate points are found to

depart significantly from the respective regression line.

This approach directly employs the adiabatic tempera-

ture rise as an indicator. The upper limit tfin,s is varied,

keeping a constant length of the final period. This is done

to avoid different weights of the data of the initial period

and the final period in the simultaneous regression. For

each choice of tfin,s, the value of DTad is computed. The

results typically show a plateau extending over 10–30 min.

The limit tfin,s is chosen to lie well within this plateau.

Figure 2 shows plots of the results obtained from a typical

data series for a combustion run and a calibration run.
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Tools for data evaluation: Simultaneous exponential

regression of the data in the initial and final periods is

currently carried out using a freeware program (Visual

Basic routine for non-linear regression, based on the

Levenberg–Marquardt algorithm, available from the web-

site http://digilander.libero.it/foxes/optimiz/Optimiz1.htm).

The program returns (i) the parameter values k, T?, Tini,e

and Tfin,s and (ii) their variance/covariance matrix. The

performance of the program was checked by comparing the

output with that of a recognised commercial program

[OriginPro 8G.0.63.988 SR6, OriginLab Corporation

(Northampton, MA, USA)], for selected measurement

series. No relevant differences were observed.

The integral of the temperature–time data over the main

period is computed using an in-house Microsoft Excel�

application.

Uncertainty sources

For the purpose of this discussion, the uncertainty sources

for the determination of the adiabatic temperature rise are

subdivided into three different categories: uncertainty due

to an error in measuring the temperature–time data,

uncertainty due to a departure from the model of the adi-

abatic temperature rise, and uncertainty due to an error in

evaluating the temperature–time data.

Uncertainty due to measurement error

Time measurement

The time basis is provided by a frequency generator

(Agilent 33120A). The frequency (f = 0.5 Hz, correspond-

ing to Dt = 2 s) is extremely stable and was calibrated

against the atomic clock standard of Germany with a devi-

ation of 18 9 10-6 Hz. The signal of the frequency gener-

ator serves as an external trigger signal for the resistance

measurement of the thermistor with an Agilent 3458A. The

integration time is set to 0.2 s and the measured signal is

sampled 20,000 times within this period of time. The time

basis of each sampling event has an uncertainty of 5 ns

(accuracy of the timer of the Agilent 3458A). The delay time

between the trigger pulse and the sampling period has an

uncertainty of approximately 50 ns (jitter).

Under these circumstances, the random uncertainty of the

time coordinates is much smaller than that of the tempera-

ture values and can therefore be neglected. For demon-

strating this, a generous upper bound smax = 10-3 s of the

standard deviation of the time coordinates will do. With a

maximum slope k(T? - T0) of about 9 9 10-5 K s-1 in the

initial and final periods (obtained from k & 2 9 10-5 s-1,

T? - T0 & (27.0 - 22.5) �C), smax = 10-3 s translates

into smax = 0.09 lK, which is negligible compared to the

typical standard deviation of the temperature measurements

of 19 lK. During the active part of the main period the slope

is larger, DT = 3 K in Dt = 1,500 s, giving DT/

Dt = 2 9 10-3 K s-1 and smax = 2 lK. But this is still

negligible compared to the typical standard deviation of the

temperature measurements of 400 lK.

Temperature measurement

Temperature is measured with a fast-response thermistor

sensor, which is calibrated off-line against a traceable Pt-25

resistance thermometer. For the purpose of uncertainty

evaluation, a distinction is made between random mea-

surement error, time-independent systematic error and drift.

Random measurement error in the initial and final

periods is taken into account in the least-squares regres-

sion, where the variance/covariance matrix of the param-

eters k, T?, Tini,e and Tfin,s is calculated from the residual

variance of the temperature values. The conditions for this

evaluation are as follows:

• The uncertainty of the time coordinates is much smaller

than the uncertainty of the temperature values. This

condition is clearly fulfilled.

• The (random) uncertainty of the temperature values is

approximately the same throughout both periods. The

data are found to conform to this requirement, with a

typical standard deviation for both periods of about

19 lK.

• The random variations of the temperature values are

approximately uncorrelated. Otherwise the residual

variance would require an autocorrelation correction.

This is not the case, see ‘‘Random fluctuation of

temperature data’’ section.

Time-independent systematic error is the residual error left

by calibration. In the narrow temperature range concerned—

about 3 K—this calibration error is approximately constant.

As a consequence, due to the shift invariance of the adiabatic

temperature rise (see ‘‘Uncertainty calculation’’ section), the

time-independent systematic error does not contribute to the

uncertainty of the adiabatic temperature rise.

Drift of the thermistor effects monotonously increasing

deviations of measured temperatures from the correct val-

ues. These errors are modelled using an ‘‘uncertain’’ drift

rate, and the uncertainty contribution is calculated by the

propagation of the uncertainty of the drift rate.

Uncertainty due to model error

The model specified in ‘‘Model of isoperibol temperature

rise’’ section assumes that at any instant t the calorimeter

Uncertainty evaluation for the adiabatic temperature rise 1601

123

http://digilander.libero.it/foxes/optimiz/Optimiz1.htm


has a spatially uniform temperature T(t). This assumption

implies that dissipation of (i) the heat transferred from the

jacket to the calorimeter, (ii) the heat produced by the

stirrer and (iii) the heat produced by the combustion of

the gas sample or by electrical heating in a calibration run,

is quick and effective, so that there are no significant

departures from a homogeneous temperature distribution.

During the initial and final periods, departures from these

conditions are negligible. But obviously this does not hold

for the main period. Dissipation of the comparatively large

amount of ‘‘extra’’ heat produced in the ‘‘activity’’ period

takes finite time, and the homogenisation of temperature

will therefore be incomplete. However, with the assump-

tions above, the model has been oversimplified. Starting

from the energy balance of the calorimeter, a precursor of

Eq. 1 is obtained as follows:

_Tbulk tð Þ ¼ uM tð Þ þ ustir þ k TJ � Tsurf tð Þð Þ: ð1#Þ

Here Tbulk is the bulk-averaged temperature of the

calorimeter, while Tsurf is the average surface temperature,

governing the heat transfer from the jacket to the calorimeter.

For an ideal calorimeter these two temperatures are the

same—but this assumption is in fact not necessary. Instead,

we may utilise the much weaker assumption that the average

surface temperature is the same as the average temperature

Tbath of the (inner) calorimeter bath. Introducing the

convergence temperature yields

_Tbulk tð Þ ¼ uM tð Þ þ k T1 � Tbath tð Þð Þ: ð1a#Þ

In the initial and final periods, we can safely assume that

Tbulk and Tbath are the same. In the main period, Tbulk and Tbath

are different, e.g. there is a lag between the rise of the bulk

average and the bath average after starting the combustion.

However, Eq. 3a for the adiabatictemperature rise remains

valid, if all temperatures are taken to be bath averages. Thus,

we conclude that the evaluation of temperature-rise data-

based Eqs. 2a, 2b and 3a is perfectly valid, provided that the

measured temperatures are the same as the bath averages,

and the main period is extended up to a point where the

dissipation of the ‘‘extra heat’’ is complete. This conclusion

also follows from West and Churney’s discussion of the two-

body model of a calorimeter [10].

In the GERG calorimeter, temperature is measured at a

single site in the bath. This design gives rise to an error

source: deviation of the temperature at the measurement

site from the bath average. This error has two components:

(i) fluctuations of the temperature in the volume sampled

by the thermistor sensor, and (ii) temporary gradients due

to transient flow patterns.

Temperature fluctuations are included, jointly with ran-

dom measurement error, in the random variations of the

temperature values in the main period. The uncertainty is

evaluated using the standard deviation of the residuals with

respect to an appropriate curve fitted to the data of the main

period. While this standard uncertainty is the same

throughout the initial and final periods, in the main period

the standard deviation varies, starting from the value in the

initial period, then rising to an approximately constant value

throughout the ‘‘activity period’’, and finally decreasing to

reach the initial value again before the end of the main

period. Typical patterns are 19–440–19 lK for a combus-

tion run and 19–400–19 lK for a calibration run. These data

are used to calculate the random uncertainty of the integral

H. For this purpose, like in the evaluation of the data from

the initial and final periods, the random variations of the

temperature values should be approximately uncorrelated.

Otherwise correlation terms would have to be included in

the uncertainty calculation. This is not the case, see ‘‘Ran-

dom fluctuation of temperature data’’ section.

Deviations due to temporary gradients are estimated on

the basis of measurements and a numerical simulation

study, and they are modelled by an ‘‘uncertain’’ control

parameter—the level of the deviations. The uncertainty

contribution is calculated by the propagation of the

uncertainty of the control parameter.

Last, but not least, the model assumes that the cooling

constant and the convergence temperature are the same

throughout all periods. However, separate regression of the

data in the initial and final periods yields significantly dif-

ferent values of both, k and T?. Analysis of residuals from

separate and simultaneous regression indicates that the

assumption of constant k and T? is perfectly valid for single

periods, but not quite so for both periods together. These

findings suggest that the large temperature rise in the main

period effects an appreciable change of k and T?, while the

(comparatively small) temperature rise in the initial and

final periods has no such consequence. The immediate

question then is which value of k and T? to use in the

calculation of the exchange term DTex. Reasonably, some

kind of mean of the values (k[ini], k[fin]) and (T?[ini],

T?[fin]) from separate regression should be used, and this is

indeed the case for the parameters k[sim] and T?[sim] from

simultaneous regression. However, even with the best

possible means, utilising constant values of k and T? in the

calculation of the exchange term DTex implies an error. In

order to investigate the level of this error, the exchange term

is calculated by an alternative approach, utilising time-

dependent parameters k and T?. The associated uncertainty

is estimated by the root mean square of the differences

obtained from replicate measurements.

There are various possible reasons for the change of k

and T? in the course of the main period. For example, due

to the temperature rise of about 3 K, the viscosity of water

decreases by about 8% relative, effecting a significant

decrease of the energy input by stirring. This will affect the

convergence temperature. The heat capacity of the

1602 W. Hässelbarth et al.
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calorimeter also undergoes some change during the main

period, which will affect the cooling constant. This listing

could be continued, but currently the various effects do not

provide a quantitative explanation of the observed change

of k and T?.

There are a few more model departures which, however,

do not require additional action.

• Additional constant energy input Other constant energy

input than from the stirrer, among other things through

the thermistor used to measure the calorimeter temper-

ature, does not compromise the model. Any such input

(or loss) will effect a change in the convergence

temperature T?. As long as this is determined from the

data in the initial and final periods, this does not cause

any problems.

• Change of nominally constant energy input The energy

input from the stirrer changes with the temperature of

the calorimeter bath. This will effect a change of the

convergence temperature, but this is accounted for in

the uncertainty estimate accounting for change in k and

T?.

• Change of heat capacity Equation 1 is obtained from

the heat balance of the calorimeter under the condition

of constant heat capacity. Hence the model requires that

the heat capacity of the calorimeter does not change

during a run. The change of heat capacity due to the

change of temperature rise (about 3 K) is indeed

negligible. However, the heat capacity also changes

due to the enthalpy difference of inlet and outlet gas, in

particular due to condensation of water vapour. Chang-

ing the heat capacity will change the cooling constant,

but this is accounted for in the uncertainty estimate

accounting for change in k and T?.

Uncertainty due to evaluation error

Integration uncertainty

Numerical integration using the Simpson rule is affected by

the error due to approximating the true curve {t, T(t)} by

(quadratic) interpolation between equidistant sampling

points. The uncertainty referring to this error is obtained

from an estimate of the potential remainder given in the

literature.

Uncertainty on the limits of the main period

The method used to specify the upper limit was reported in

‘‘Model of isoperibol temperature rise’’ section. The pla-

teau described there is not totally flat, and the standard

deviation of the values on the plateau is used directly as a

contribution of the uncertainty on the upper limit to the

uncertainty of the adiabatic temperature rise. This number

could be expressed as a product of a rather large standard

uncertainty u(tfin,s) and a small sensitivity coefficient, but

this is hardly worthwhile. The contribution of the uncer-

tainty on the lower limit is neglected.

Summary

Table 2 gives a summary of the various uncertainty sources

considered.

‘‘Uncertainty propagation according to GUM’’ section

presents a summary of the standard GUM methodology,

while the specific implementation for the evaluation of the

adiabatic temperature rise is described in ‘‘Uncertainty

evaluation for the adiabatic temperature rise’’ section.

Table 2 Uncertainty sources

Uncertainty source Period concerned Evaluation

Initial Main Final

Time measurement X X X None (negligible)

Temperature measurement—time-independent systematic error X X X None (cancels out)

Temperature measurement—drift X X X Propagation of uncertainty on the control parameter

Random fluctuation of temperature data X X X Statistical evaluation

Temperature difference: measurement site—bath average X Propagation of uncertainty on the control parameter

Change of cooling constant and convergence temperature X Comparison with alternative evaluation

Other constant energy input X X X None (no consequence)

Change of nominally constant energy input X Included in the comparison with alternative evaluation

Change of heat capacity X Included (as above)

Numerical integration X Estimate of approximation error

Specification of main period limits X X X Statistical evaluation

Uncertainty evaluation for the adiabatic temperature rise 1603

123



Examples referring to current measurements are given in

‘‘Examples’’ section.

Uncertainty propagation according to GUM

The proposed uncertainty evaluation procedure is based on

the recommendations of the GUM [11]. An authoritative

introduction to this document is given in [12]. This section

presents a summary of the standard GUM methodology.

The backbone of the standard GUM methodology is the

law of uncertainty propagation, expressing the standard

uncertainty of the target quantity as a root sum of squares

of contributions from the various uncertainty sources. The

basics steps of this recipe are as follows.

A mathematical model of the measurement is set up,

expressing the target quantity y as a function of the various

input quantities x1, x2, …, xn, associated with the relevant

uncertainty sources. Often this is just the equation or the

algorithm (or the system of equations/algorithms) used to

calculate the target quantity from the results of the mea-

surements made. Sometimes, however, an uncertainty

source has no counterpart in the evaluation of the mea-

surements. Then an additional input quantity is introduced

to complete the mathematical model.

In the next step, the contributions of the various

uncertainty sources are quantified as products, uk(y) =

ck(y)u(xk), of the standard uncertainty u(xk) of the respec-

tive input quantity xk and the sensitivity coefficient ck(y) of

the target quantity with respect to changes of the input

quantity. Depending on the available data, the standard

uncertainties are either determined as standard deviations

of measurement series (type A evaluation) or as standard

deviations of probability distributions expressing the

available information about the value of the input quantity,

e.g. a rectangular distribution between an upper and a

lower limit (type B evaluation). The sensitivity coefficients

ck yð Þ ¼ y . . . xk þ Dxk. . .ð Þ � y . . . xk. . .ð Þ
Dxk

¼ oy

oxk

� �
ð6Þ

can be determined as follows:

• Experimentally The target quantity is determined at

different values of the input quantity, with all other

input quantities unchanged.

• Numerically The evaluation algorithm is carried out at

different values of the input quantity, with all other

input quantities unchanged.

• Differential calculus The partial derivative of the

mathematical expression for the target quantity (if

available) with respect to the input quantity is calcu-

lated and evaluated at the current values of the target

quantity and the input quantities.

Finally the standard uncertainty u(y) of the target

quantity is calculated by the squared addition of the various

uncertainty contributions:

u2 yð Þ ¼ u2
1 yð Þ þ u2

2 yð Þ þ � � � þ u2
n yð Þ: ð7Þ

In the numerical approach, the uncertainty contributions

uk(y) are conveniently calculated in a single step as finite

differences, uk(y) = (qy/qxk)u(xk) & y(…, xk ? u(xk), …)

- y(…, xk, …). Then the standard uncertainty of the target

quantity is obtained as a root sum of squares of the dif-

ferences obtained for the input quantities. This approach

can be extended from the propagation of standard uncer-

tainties to the propagation of probability distributions

attributed to the input quantities, using a Monte Carlo

simulation [13]. This will give a probability distribution for

the values of the target quantity, from which, in addition to

the mean value and the standard deviation, various other

characteristics such as confidence ranges for specified

confidence levels are obtained.

Everything said so far refers to absolute uncertainties of

the target quantity and the input quantities (i.e. uncertainties

expressed in the unit of the quantity concerned). If relative

uncertainties are preferred, the sensitivity coefficients have

to be changed accordingly. Then Eq. 7 takes the form

u2
rel yð Þ ¼

X
k

u2
k;rel yð Þ ð7aÞ

with relative uncertainty contributions uk,rel(y) = ck,rel(y)

urel(xk) and relative sensitivity coefficients

ck;rel yð Þ ¼ ck yð Þ xk

y
¼ oy

oxk

� �
xk

y
: ð6aÞ

Pythagoras theorem is restricted to uncorrelated

uncertainty contributions. Significant correlations between

the input quantities (more specifically: between errors of

the input quantities) have to be quantified, preferably by

correlation coefficients, and included in the uncertainty

calculation as follows:

u2 yð Þ ¼
X

k

u2
i yð Þ þ

X
k

X
l 6¼k

r xk; xlð Þuk yð Þul yð Þ: ð8Þ

Correlations arise if two input quantities depend upon

each other or upon a common third quantity. Such

dependency can refer to the quantities themselves but

also to their determination. For example, if determined

from the same calibration data by least-squares regression,

the slope and intercept of a calibration line are correlated,

even though these are independent physical quantities.

In the expression of measurement results, the standard

uncertainty u(y) may be replaced by an expanded uncer-

tainty, U(y) = ku(y), with a specified coverage factor k. As

a default value, k = 2 is recommended; this corresponds to

a confidence level (coverage probability) of about 95%.
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This is a pragmatic recipe. Given appropriate information

about the probability distribution of the target quantity,

coverage factors for specified confidence levels may be

calculated.

Note: Due to the fact that k is the standard notation for

the coverage factor, but also for the cooling constant, this

symbol will be used for both purposes.

Uncertainty evaluations are conveniently documented

in a tabular format known as an ‘‘uncertainty budget’’

(Table 3).

Uncertainty budgets are valuable diagnostic tools for the

development and optimisation of measurement procedures.

For this purpose, Eq. 7 is re-written as follows:

X
k

u2
k yð Þ

u2 yð Þ ¼ 1: ð7bÞ

The variance fractions (variance = squared standard

uncertainty) indicate which uncertainty sources are the

main contributors to the uncertainty of the target quantity.

Only for these sources do efforts to reduce the uncertainty

make sense, while this would be a waste for all others.

Uncertainty propagation is also used to evaluate covari-

ances or correlation coefficients for two target quantities, e.g.

for the adiabatic temperature rise of a combustion run and

that of the associated calibration run. These data are required

when evaluating the uncertainty of the calorific value of the

gas sample, where both the combustion temperature rise and

the calibration temperature rise provide input.

Keeping with the formulas used before, the covariance

of two quantities y and z is calculated as the sum of the

products of the uncertainty contributions of input quantities

common to both,

u y; zð Þ ¼ u1 yð Þu1 zð Þ þ u2 yð Þu2 zð Þ þ � � � þ uc yð Þuc zð Þ; ð9Þ

where x1, x2, …, xc are the common input quantities of

both y and z. The covariance is related to the correlation

coefficient by u(y, z) = r(y, z)u(y)u(z). The latter, taking

values between 1 and -1, specifies the type (positive or

negative) and level of correlation.

Equation 9 is valid for independent input quantities. In

case of correlated input quantities, covariances are

calculated as follows. Let x1, x2, …, xn be the input

quantities of y and w1, w2, …, wm the input quantities of z.

Then

u y; zð Þ ¼
X

k

X
l

r xk;wlð Þuk yð Þul zð Þ: ð10Þ

Uncertainty evaluation for the adiabatic temperature

rise

Preparatory considerations

The mathematical model for the determination of the adi-

abatic temperature rise is given by the following equations

copied from ‘‘Model of isoperibol temperature rise’’

section:

DTad ¼ Tfin;s � Tini;e � kT1 tfin;s � tini;e

� �
þ kH; ð5Þ

where the quantities k, T?, Tini,e and Tfin,s are obtained from

the data of the initial and final periods by simultaneous

regression, using the functions:

Tini tð Þ ¼ T1 � T1 � Tini;e

� �
exp �k t � tini;e

� �� �
ð2aÞ

and

Tfin tð Þ ¼ T1 � T1 � Tfin;s

� �
exp �k t � tfin;s

� �� �
: ð2bÞ

while the quantity H is obtained by numerical integration

of the data in the main period

H ¼
Ztfin;s

tini;e

T tð Þdt: ð4Þ

The main ingredients for the uncertainty evaluation are

given by the results of the analysis of uncertainty sources in

‘‘Uncertainty sources’’ section.

The standard GUM methodology would embark on

Eq. 5 and use uncertainty propagation to express the

standard uncertainty of the adiabatic temperature rise by

the standard uncertainties of the quantities k, T?, Tini,e and

Tfin,s. Due to the fact that these quantities, in turn, share a

lot of common input quantities, correlations would have to

Table 3 Format of uncertainty budgets

Input quantity Symbol Value Standard uncertainty Sensitivity coefficient Uncertainty contribution Variance fraction

(Name) X1 x1 u(x1) c1(y) u1(y) = c1(y)u(x1) u1
2(y)/u2(y)

(Name) X2 x2 u(x2) c2(y) u2(y) = c2(y)u(x2) u2
2(y)/u2(y)

… … … … … … …
(Name) Xn xn u(xn) cn(y) un(y) = cn(y)u(xn) un

2(y)/u2(y)

Target quantity Symbol Value Standard uncertainty Coverage factor Expanded uncertainty

(Name) Y y u(y) k U(y) = ku(y)
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be taken into account and quantified by estimating the

respective correlation coefficients. This would result in an

uncertainty propagation equation as follows:

u2 DTadjk; T1; Tini;e; Tfin;s;H
� �

¼ RVarþ 2RCov; ð11Þ

with the variance sum [abbreviation: Lt = tfin,s - tini,e]:

RVar ¼ u2 Tfin;s

� �
þ u2 Tini;e

� �
þ H� T1Lt½ �2u2 kð Þ

þ k2L2
t u2 T1ð Þ þ k2u2 Hð Þ; ð11aÞ

and the covariance sum [covariances are symmetric, i.e.

u(a, b) = u(b, a)]:

RCov ¼� u Tfin;s; Tini;e

� �
þ H� T1Lt½ �u Tfin;s; k

� �
� kLtu Tfin;s; T1

� �
þ ku Tfin;s;H

� �
� H� T1Lt½ �u Tini;e; k

� �
þ kLtu Tini;e; T1

� �
� ku Tini;e;H

� �
� kLt H� T1Lt½ �u k; T1ð Þ
þ k H� T1Lt½ �u k;Hð Þ � k2Ltu T1;Hð Þ:

ð11bÞ

In these equations, covariances u(x, y) were used instead

of correlation coefficients r(x, y), and the abbreviation

Lt = tfin,s - tini,e was used for the length of the main

period, to keep the formulas as simple as possible.

There is also an uncertainty on the limits tfin,s and tini,e of

the main period. However, considering Eq. 5, it would be

unwise to try to include these uncertainties in the uncer-

tainty propagation, because this would result in large

uncertainty contributions with almost complete cancella-

tion. Determining small differences of very large numbers

is plagued with notoriously high uncertainty and should

preferably be left if alternatives are available. Therefore,

the contribution of the uncertainty of the limits of the main

period should rather be determined separately, and added in

quadrature to the variance calculated according to Eq. 11:

u2 DTadð Þ ¼ u2 DTadjk; T1; Tini;e; Tfin;s;H
� �

þ u2 DTadjtini;e

� �
þ u2 DTadjtfin;s

� �
:

ð12Þ

Note: Simple addition in quadrature may appear

questionable, because errors in the specification of the

limits have a strong impact on the values of the temperatures

Tini,e, Tfin,s and the integral H. How about the contributions

of the associated covariances? In fact, the covariance

contributions are already included in the variance

contributions of tini,e and tfin,s, if these are determined

directly. This is true, because then Tini,e, Tfin,s and H are not

kept constant while varying tini,e and tfin,s but change

accordingly, with the consequence that the sensitivity

coefficients in the uncertainty contributions of tini,e and

tfin,s are not the partial derivatives but the total derivatives.

Transferring covariance contributions into modified

variance contributions by application of the chain rule of

differential calculus is a well-known trick to get rid of

inconvenient correlations.

The application of Eq. 11 would require the evaluation

of 5 variances and 10 covariances—a formidable task.

Even worse, there is no real interest in these variances and

covariances per se; they are merely lumped together in

calculating the variance of the adiabatic temperature rise.

In addition to these considerations, for reasons explained in

the next section, the correct calculation would imply many

cancellations between positive and negative contributions.

Therefore, even a single error in a major contribution could

easily spoil the result.

Because of these reasons, we will only make restricted

use of uncertainty propagation according to Eq. 11.

Instead, as far as possible, the variance contributions of the

uncertainty sources identified in ‘‘Uncertainty sources’’

section will be determined directly.

However, the evaluation of the standard uncertainty of

single results for the adiabatic temperature rise is not the

only task. In addition an estimate of the correlation coeffi-

cient between the results of a combustion run and the

associated calibration run is required, because these data are

jointly used in the determination of the calorific value of the

respective gas sample. Another issue requiring correlation

coefficients would be the uncertainty of mean values cal-

culated from the results of replicate measurements.

Uncertainty calculation

The model of the adiabatic rise assumes that, in the

respective temperature range, the cooling constant is truly a

constant. Given this, the adiabatic temperature rise is shift

invariant, i.e. the value of DTad does not change if the

temperature values T(t) in all three periods are all shifted

by a fixed dT according to T(t) ? T(t) ? dT. This is evi-

dent from the model, since the adiabatic temperature rise is

calculated from differences of temperatures (and the con-

vergence temperature will undergo the same shift). Fortu-

nately it is also true for the adiabatic temperature rise

calculated from measured temperature–time series. To

confirm this, various measurement series were evaluated

with and without an appropriate shift. The results agreed

within numerical uncertainty limits.

This shift invariance has a convenient consequence: a

constant systematic error of all temperature values in a

measurement series has no effect on the result for the

adiabatic temperature rise. Therefore, uncertainty contri-

butions from such measurement errors, or other effects

resulting in a constant shift are zero and need not be

evaluated.

The subsections below deal with the different types of

uncertainty sources identified in ‘‘Uncertainty sources’’
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section. These are random and systematic effects on the

series of temperature-rise data and errors made in the

evaluation of a given data series.

The uncertainty contributions of the random effects on

temperature-rise data are evaluated by statistical methods,

utilising the standard deviation of the residuals in the

respective periods.

The uncertainty contributions of systematic effects on

temperature-rise data are determined directly from the

effect on the results for the adiabatic temperature rise. For

this purpose effects on temperature-rise data are modelled

using a control parameter to specify the level of the effect.

This control parameter, in turn, is modelled by a random

variable with a specified probability distribution. The

mean value of the control parameter, if non-zero, is

employed for correcting the temperature-rise data, and for

estimating the associated bias of the adiabatic temperature

rise obtained. The standard deviation of the control

parameter is used for calculating the associated contribu-

tion to the uncertainty of the (corrected) adiabatic tem-

perature rise.

Note: At first sight, systematic effects with random

control parameters may appear contradictory. However, in

this scenario, ‘systematic’ refers to the behaviour within

data series, while ‘random’ refers to the behaviour between

data series.

The uncertainty due to the change of cooling constant

and convergence temperature is estimated by a comparison

with the results of an alternative evaluation utilising time-

dependent parameters.

The uncertainty contributions of evaluation errors are

determined directly from appropriate error estimates.

Random fluctuation of temperature data

Initial and final periods Simultaneous exponential

regression of the data in the initial and final periods returns

the parameter values k, T?, Tini,e and Tfin,s and their vari-

ance/covariance matrix, i.e. the variances of, and the

covariances between these four quantities, resulting from

the random fluctuation of the temperature values in both

periods. From these data the variance contribution of the

random fluctuation in the initial and final periods is cal-

culated as follows (compare ‘‘Preparatory considerations’’

section):

u2 DTadjrandomjini & finð Þ ¼ RVarþ 2RCov; ð13Þ

with the variance sum:

RVar ¼ u2 Tfin;s

� �
þ u2 Tini;e

� �
þ H� T1Lt½ �2u2 kð Þ

þ k2L2
t u2 T1ð Þ; ð13aÞ

and the covariance sum [u(a, b) = u(b, a)]:

RCov ¼� u Tfin;s; Tini;e

� �
þ H� T1Lt½ �u Tfin;s; k

� �
� kLtu Tfin;s; T1

� �
� H� T1Lt½ �u Tini;e; k

� �
þ kLtu Tini;e; T1

� �
� kLt H� T1Lt½ �u k; T1ð Þ;

ð13bÞ

where Lt = tfin,s - tini,e denotes the length of the main

period.

Finally, we would like to address the correlation issue—

irrespectively of the fact that in the present case the random

fluctuation of the temperature data only contributes mar-

ginally to the uncertainty of the adiabatic temperature rise.

The variance/covariance matrix of the parameter values is

obtained from the variance of the residuals. If the residuals

are (positively) correlated, their variance will underesti-

mate the actual variance of the temperature fluctuations by

a factor (1 - rav) where rav is the average of the correlation

coefficients for any two residuals. To examine this, the

autocorrelation function (ACF) of the residuals was com-

puted, showing only weak short-range correlations. Con-

sidering the large number of data points (n = 2,000), it is

only a tiny fraction of the entire set of n(n - 1)/2 corre-

lation coefficients that contributes to the average. There-

fore, rav is close to zero, and no correction is required.

Main period The objective is to evaluate the integral H
defined by Eq. 4. Enumerating the main period data by

(ti, Ti), i = 0, 1, 2, …, m, and assuming equidistant sam-

pling points, ti - ti-1 = Dt, the approximation according

to the Simpson rule is obtained as follows:

HSimpson ¼
Dt

3
T0þ 2

Xm=2�1

i¼1

T2iþ 4
Xm=2

i¼1

T2i�1þ Tm

" #
: ð14Þ

This calculation requires m to be an even number.

Assuming uncorrelated random fluctuation of the

temperature values with constant standard deviation sM,

the corresponding standard uncertainty of HSimpson is

obtained by straightforward uncertainty propagation as

follows:

urand HSimpson

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10m� 2
p Dt

3
sM �

ffiffiffiffiffiffiffiffiffi
10m
p Dt

3
sM; ð15Þ

where the minus 2 were dropped, considering values of m

about 2,000. This would give a variance contribution of the

random fluctuation in the main period of

u2 DTadjrandjmainð Þ ¼ 10

9
Dtð Þ2k2ms2

M: ð16Þ

However, the standard deviation of the temperature

values changes in the course of the main period: from a

constant high-level sMH during the ‘‘activity period’’,

followed by a monotonic decrease to a constant low level
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sML during the remaining section of the main period. With

mH points in the high-level period, mT points in the

transition period, and mL points in the low-level period, and

with a linear decrease of the variances, an approximate

value for the variance contribution of the random

fluctuation in the main period is obtained as follows:

u2 DTadjrandjmainð Þ ¼ 10

9
Dtð Þ2k2

�
mH þ

mT

2

� 	
s2

MH

þ mL þ
mT

2

� 	
s2

ML



: ð16aÞ

Refined calculations, utilising an improved description of

the transition, would only be worthwhile if this were indeed

a major variance contribution.

Note: The low-level period includes the 4–5 min

between tini,e and ton.

The final remark concerns the correlation issue. In the

main period correlation between residuals has a double

effect: (i) The residual variance gives a biased estimate of

the actual variance of the temperature fluctuations and

requires correction. (ii) Covariances have to be included in

the uncertainty propagation for the integral. The investi-

gation of correlations can be restricted to the active period

since this provides more than 99% of the uncertainty

contribution. For this purpose, we have used the correction

factor [1 ? (n - 1)rav]/[1 - rav] where again rav is the

average of the correlation coefficients for any two residu-

als, and n the number of data points concerned. In the

active period, the ACF of the residuals shows a damped

oscillation around zero. We have no explanation for this

behaviour and therefore suspect an artefact. To deal with

this situation, we calculated average correlation coeffi-

cients for different cut-off limits, i.e. using the ACF values

up to a specified maximum range and zero for any larger

range. Depending on this limit, the average rav takes

positive and negative values of about ±10-3. Thus, we can

put the denominator [1 - rav] = 1. The numerator

[1 ? (n - 1)rav] varies between 2 and 0.5. In this situation,

we see neither a need nor a justification for a correction

factor different from 1. Therefore, no correction is applied.

Systematic effects on temperature data

Drift in temperature measurement Drift effects increas-

ing the error of measured temperatures. Therefore, the drift

behaviour of the measurement device—in this case a

thermistor sensor—has to be determined, and the measured

temperatures have to be corrected to the time of the last

calibration. Considering that constant systematic error has

no adverse effect on the adiabatic temperature rise, cor-

rection to the starting time t0 of the measurement series will

do. Assuming that, in the temperature range concerned,

drift effects an offset increasing with a constant rate, i.e.

T(t0) ? T(t) = T(t0) ? R(t - t0), the applicable correction

is given by T(t) ? T(t0) = T(t) - R(t - t0). For this pur-

pose the value of the drift rate is required. If the drift rate is

known within specified uncertainty limits, the strategy

complying with GUM recommendations is to use an

appropriate mean for drift correction, and calculate the

uncertainty on the correction from the standard uncertainty

corresponding to the specification. In the following, two

practical cases are considered: (A) drift may be positive or

negative, the only available information being a 24-h

maximum absolute value |DTmax|, (B) drift is positive, with

a specified 24-h maximum value DTmax.

Case A As a first step, |DTmax| is converted into a

positive drift rate Rmax in appropriate units. Assuming

equal likelihood of positive and negative drift, with no

preference of values in the specified range [-Rmax B

R B Rmax], the drift rate may be treated as a random var-

iable with a rectangular probability distribution between

-Rmax and Rmax. This distribution has a mean value of zero

and a standard deviation of u(R) = Rmax/H3.

Due to the mean value of zero, there is no correction to

make. But the uncertainty of the drift rate gives rise to an

uncertainty of the adiabatic temperature rise calculated

from a measurement series. This uncertainty contribution,

or rather the variance contribution, is obtained using the

finite difference scheme described in ‘‘Uncertainty propa-

gation according to GUM’’ section as follows. Given a

measurement series (t0, T0), (t1, T1), (t2, T2), …, (tN, TN),

the temperature values are changed according to

Ti ! Ti þ #Drift tið Þ
with #Drift tið Þ ¼ u Rð Þ ti � t0ð Þ ¼ Rmaxffiffiffi

3
p ti � t0ð Þ: ð17Þ

The series {(ti, Ti ? #Drift(ti))} is evaluated, and the

difference is calculated between the results obtained on

the modified series and the result obtained on the original

series.

DDrift DTad Tif gð Þð Þ ¼ DTad Ti þ #Drift tið Þf gð Þ � DTad Tif gð Þ:
ð18Þ

In Eq. 18, the notation for the series was abbreviated from

{(ti, Ti)} to {Ti} and from {(ti, Ti ? #Drift(ti))} to

{Ti ? #Drift(ti)}, and this notation will be used further on.

The difference squared gives the variance contribution

of the drift:

u2 DTadjDriftð Þ ¼ DDrift DTad Tif gð Þð Þ½ �2: ð19Þ

Case B As a first step, DTmax is converted into a drift

rate Rmax in appropriate units. Assuming equal likelihood

of drift rates within the specified range [0 B R B Rmax],

the drift rate may be treated as a random variable with a
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rectangular probability distribution between 0 and Rmax.

This distribution has a mean value of Rmax/2 and a standard

deviation of u(R) = Rmax/2H3.

In this case, the recommended procedure is to correct

the temperature data using the mean drift rate:

Ti ! Ti;corr ¼ Ti � �#Drift tið Þ
with �#Drift tið Þ ¼ �R ti � t0ð Þ ¼ Rmax

2
ti � t0ð Þ:

ð20Þ

For calculating the variance contribution, the corrected

measurement series is modified according to the standard

uncertainty u(R) on the drift rate:

Ti;corr ! Ti;corr þ #Drift tið Þ
with #Drift tið Þ ¼ u Rð Þ ti � t0ð Þ ¼ Rmax

2
ffiffiffi
3
p ti � t0ð Þ: ð21Þ

The series {Ti,corr ? 0Drift(ti)} is evaluated, and the

difference is calculated between the results obtained on

these two series.

DDrift DTad Ti;corr

� �� �� �
¼ DTad Ti;corr þ #Drift tið Þ

� �� �
� DTad Ti;corr

� �� �
: ð22Þ

The difference squared gives the variance contribution of

the drift:

u2 DTadjDriftð Þ ¼ DDrift DTad Ti;corr

� �� �� �
 �2
: ð23Þ

To take care of the correction, there are two procedures

as follows:

(a) The correction of the temperature values according to

the mean drift rate is noted, and performed jointly

with the corrections resulting from the treatment of

other systematic effects at the end. The evaluation of

the corrected measurement series then gives the best

estimate of the adiabatic temperature rise.

(b) The respective bias of the adiabatic temperature rise

is noted,

b DTadjDriftð Þ ¼ DTad Tif gð Þ � DTad Ti;corr

� �� �
ð24Þ

and at the end the adiabatic temperature rise obtained

from the original measurement series is corrected by

subtracting the bias sum.

Procedure (b) is preferred here, see ‘‘Combined uncer-

tainty’’ section.

Departure of sampled temperatures from bath aver-

ages Relevant departures of the temperature at the mea-

surement site from the bath average are restricted to the

main period. The uncertainty evaluation is based upon a

simple model as follows: a constant difference D throughout

the ‘‘activity’’ period, followed by a transition period of

monotonic decrease to zero difference throughout the rest of

the main period. Letting [ton B t B toff] and [toff B t B tequ]

denote the activity period and the transition period,

respectively, and using a linear decrease in the transition

period, the model is defined by a ramp function as follows:

#SB(t) = 0 for t \ ton, #SB(t) = D for ton B t B toff,

#SB(t) = D[(tequ - t)/(tequ - toff)] for toff B t B tequ and

#SB(t) = 0 for t [ tequ.

Note: By default the transition period of the departures

from the bath average is taken to be the same as the tran-

sition period of the random fluctuations in the main period.

However, in specific cases, a different choice may be

appropriate.

As in the treatment of drift, case A, we take positive and

negative departures to occur equally probably, with no pref-

erence in a specified range [-Dmax B D B Dmax]. Accord-

ingly the control parameter D is treated as a random variable

with a rectangular probability distribution between specified

limits -Dmax and Dmax. This distribution has a mean value of

zero and a standard deviation of u(D) = Dmax/H3.

Due to the mean value of zero, there is no correction to

make. But the uncertainty of the control parameter gives

rise to an uncertainty of the adiabatic temperature rise

calculated from a measurement series. The associated

variance contribution could be calculated by the same

procedure as the one used for the variance contributions of

drift and jacket temperature. However, in this case the

difference between values of the adiabatic temperature rise

calculated from the modified series and the original series

may be calculated directly by integrating the ramp function

#SB(t) with D put to u(D) = Dmax/H3.

DSB DTad Tif gð Þð Þ ¼ k

Ztfin;s

tini;e

#SB tð Þdt

¼ k
Dmaxffiffiffi

3
p Lact þ

Ltrans

2

� �
; ð25Þ

where Lact = toff - ton and Ltrans = tequ - toff denote the

length of the activity period and the transition period,

respectively.

The difference squared gives the variance contribution

of this effect:

u2 DTadjSamplingð Þ ¼ DSB DTad Tif gð Þð Þ½ �2: ð26Þ

Due to the mean value zero of the control parameter, the

respective bias of the adiabatic temperature rise is zero.

Model error: change of cooling constant

and convergence temperature

The model assumes that the cooling constant and the

convergence temperature are the same throughout all

periods. However, separate regression of the data in the

initial and final periods yields significantly different values
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of k[ini] = k[fin] and T?[ini] = T?[fin]. Simultaneous

regression typically yields values of k[sim] and T?[sim]

between those from separate regression. Apparently the

large temperature rise in the main period effects an

appreciable change of k and T?. If this change were

known, the exchange term would be obtained by (alterna-

tive evaluation):

DTex alt½ � ¼
Ztfin;s

tini;e

k tð Þ T tð Þ � T1 tð Þ½ �dt: ð27Þ

In the current approach (dedicated evaluation), the

exchange term is calculated according to:

DTex ded½ � ¼ k sim½ �
Ztfin;s

tini;e

T tð Þ � T1 sim½ �½ �dt: ð27aÞ

In order to investigate the error due to this approximation,

we assume a linear change of k and T? from the initial-

period values k[ini] and T?[ini] to the final-period values

k[fin] and T?[fin]. More specifically, we assume that this

change happens in the active part of the main period

(combustion or electrical heating). The associated variance

contribution is given by the mean square of the differences

obtained from (n) replicate measurements:

u2 DTex ded½ �jModelð Þ ¼ 1

n

Xn

i¼1

DTex;i ded½ � � DTex;i alt½ �
� �2

:

ð28Þ

However, there are also differences between (i) the values

Tini,e[sep] and Tini,e[sim] and (ii) the values Tfin,s[sep] and

Tfin,s[sim] from separate and simultaneous regression.

Considering this, the adiabatic temperature rise would be

calculated according to:

DTad alt½ � ¼ Tfin;s sep½ � � Tini;e sep½ �

�
Ztfin;s

tini;e

k tð Þ T tð Þ � T1 tð Þ½ �dt; ð29Þ

while in the dedicated approach

DTad ded½ � ¼ Tfin;s sim½ � � Tini;e sim½ �

� k sim½ �
ZtF

tI

T tð Þ � T1 sim½ �½ �dt: ð29aÞ

Thus, the variance contribution of the model error in the

present approach is estimated by:

u2 DTad ded½ �jModelð Þ ¼ 1

n

Xn

i¼1

DTad;i ded½ � � DTad;i alt½ �
� �2

:

ð30Þ

Evaluation error

Uncertainty on the limits of the main period As already

stated previously, for the upper limit, the standard devia-

tion of the values on the plateau of candidate values (see

‘‘Model of isoperibol temperature rise’’ section) is used

directly as a contribution of the uncertainty on the upper

limit to the uncertainty of the adiabatic temperature rise.

This number could be expressed as a product of a rather

large standard uncertainty u(tfin,s) and a small sensitivity

coefficient, but this is hardly worthwhile. The contribution

of the uncertainty on the lower limit is neglected.

Integration error According to Bronstein and Semen-

djajew [14] the approximation error for the Simpson rule

can be estimated as follows:

DHSimpson �
HSimpson �H 2½ �

Simpson

15
: ð31Þ

In this equation H 2½ �
Simpson is the result obtained using the

even sampling points t0, t2, t4, t6, … exclusively. For this

purpose, the number m has to be a multiple of 4. Taking the

absolute value of this estimate as a standard uncertainty,

the variance contribution of the integration error is:

u2 DTadjSimpsonð Þ ¼ k2
HSimpson �H 2½ �

Simpson

15

 !2

: ð32Þ

Combined uncertainty

Note: In the case presented, there is at most one bias

contribution: from determinate drift (case B), if applicable.

However, since the methodology should be applicable to

other cases too, a general description was chosen.

In the uncertainty evaluation we have accounted for

various error sources and the associated uncertainty con-

tributions by way of random and systematic effects on the

series of temperature-rise data, estimates of the effect of

model error, and estimates of errors made in the evaluation

of a given data series. Since these effects/errors are all

mutually independent, the combined standard uncertainty

of the adiabatic temperature rise, corrected for bias (if

any), is obtained by adding the variance contributions of

the effects/errors and taking the square root of the sum:

u2 DTad;corrjRE
� �

¼
X

E

u2 DTadjEð Þ: ð33Þ

In this equation, the sum is taken over all contributing

effects/errors. The combined bias (if applicable) of the

adiabatic temperature rise is obtained by adding the biases

(if any) determined in the evaluation of the systematic

effects:
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b DTadjREð Þ ¼
X

E

b DTadjEð Þ: ð34Þ

In this equation, the sum is again taken over all effects/

errors, but there will only be few (if any) non-zero

contributions. The result for the adiabatic temperature rise

is corrected by subtracting the combined bias:

DTad ! DTad;corr ¼ DTad � b DTadjREð Þ: ð35Þ

Although not recommended by the GUM, there may be

cases where the correction is doubtful. Then, as an

alternative, no correction is carried out, and the bias is

added in quadrature to the variance sum obtained for the

corrected result:

u2 DTadjREð Þ ¼ u2 DTad;corrjRE
� �

þ b2 DTadjREð Þ: ð36Þ

This procedure was first proposed in [15] and is meanwhile

widely used, see e.g. [16]. Basically, it amounts to

replacing the variance as a measure of uncertainty for

unbiased estimates by the mean squared error as a measure

of uncertainty for biased estimates.

Estimation of correlation coefficients

As mentioned before, the evaluation of the standard

uncertainty of single results for the adiabatic temperature

rise is not the only task. In addition an estimate of the

correlation coefficient between the results of a combustion

run and the associated calibration run is required, because

these data are jointly used in the determination of the

calorific value of the respective gas sample. Another issue

requiring correlation coefficients would be the uncertainty

of mean values calculated from the results of replicate

measurements.

Due to the fact that there are no correlations between the

effects/errors within a run, between-run correlation could

only occur between same effects. Examining the list of

candidate pairs, correlation between random fluctuations

can be excluded. The same applies to correlation between

integration errors and correlation between effects related to

the location of main period limits. This leaves us with three

candidate correlated pairs as follows:

• Thermistor drift in run 1–thermistor drift in run 2

• Change of k and T? in run 1–change of k and T? in

run 2

• Departure from bath average in run 1–departure from

bath average in run 2.

This is the moment requiring specification, how the

assignment of a random variable to the control parameter

of a systematic effect is to be understood. If the control

parameter is taken to be a random variable with a specified

probability distribution, this can mean that:

• the parameter value is the same from run to run, but this

value is not exactly known (fixed effect), or

• the parameter value varies from run to run in accord with

the specified distribution (independent random effect).

In addition to these two ‘‘pure’’ cases, there is also an

intermediate case as follows:

• the parameter value varies from run to run in accord

with the specified distribution, but there is correlation

between these variations (correlated random effect).

As a consequence of between-run correlation, the level of

change between consecutive runs is lower than expected from

the standard deviation of the probability distribution. The

limiting cases of no correlation (r = 0) and complete correla-

tion (r = 1) between runs correspond to the pure cases above.

Thermistor drift Between-run correlation of drift rates is

rather probable, in particular with the indefinite specifica-

tion (case A). This could be investigated experimentally. In

the present case, however, the uncertainty contribution of

thermistor drift is comparatively small. Therefore, drift

would only contribute marginally to the prospective cor-

relation coefficient.

Change of k and T? Between-run correlation is certainly

to be expected. Given that the temperature rise in the main

period is the driver of the change, and considering that

combustion and calibration are carefully designed to gen-

erate the same temperature rise, one could even expect

complete correlation. This assumption would be appropriate

for correlation between successive combustion runs or

successive calibration runs. However, there is reason to

believe that the change of system parameters behind k and

T? is somewhat different for calibration and combustion

(e.g. no water is produced in calibration). Therefore, a

correlation coefficient between 0.5 and 1 could be expected.

Departure from bath average Transient gradients

effecting between-run correlation of the departures at the

measurement from the bath average are certainly not

beyond imagination, but currently we have no data sup-

porting such an assumption.

Given defendable estimates of the between-run corre-

lation coefficients for the errors from each of the three

effects above, the correlation coefficient for the (corrected)

adiabatic temperature rise from two runs could be calcu-

lated as follows:

r DTad;corr�1;DTad;corr�2

� �
¼
X

E

r DTad;corr�1;DTad;corr�2jE
� �

�
u DTad;corr�1jE
� �
u DTad;corr�1

� � u DTad;corr�2jE
� �
u DTad;corr�2

� � ;

ð37Þ

where the sum is over the contributions of the three effects

under consideration.
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Considering the discussion above, the contribution of

thermistor drift can be neglected. Since there is no basis for

an estimation of the correlation coefficient of departures

from bath averages, the default estimate is zero. The cor-

relation coefficient of model errors could be estimated as 1

for two calibrations, the same for two combustions, and 0.8

for a calibration and the associated combustion. With these

raw estimates, the correlation coefficient for two calibra-

tions or two combustions is given by

r DTad;corr�1;DTad;corr�2

� �

�
u DTad;corr�1jModel
� �

u DTad;corr�1

� � u DTad;corr�2jModel
� �

u DTad;corr�2

� � ;
ð38Þ

while the ‘‘mixed’’ correlation coefficient, i.e. for a

calibration and the associated combustion is

r DTad;corr�1;DTad;corr�2

� �

� 0:8
u DTad;corr�1jModel
� �

u DTad;corr�1

� � u DTad;corr�2jModel
� �

u DTad;corr�2

� � ð39Þ

In the calculation of the calorific value of a gas, the

values of the adiabatic temperature rise from combustion

and from calibration enter as a quotient. Correlation will

reduce the standard uncertainty of such a quotient.

Therefore, putting the correlation coefficient to zero will

give a worst-case uncertainty estimate. On the other hand,

correlation will increase the standard uncertainty of a sum.

Therefore, if the target is to generate a worst-case estimate

of the uncertainty of a mean value, the correlation

coefficient should be put to unity.

Examples

Uncertainty data can hardly be estimated with a relative

precision better than 10%. Therefore, such data should not

be specified with more than two digits. However, for

comparison purposes, in the example the decimal presen-

tation is given with a higher number of digits.

Combustion run

Basic data

Measurement series G567, initial period 0–4,000 s, main

period 4,000–8,000 s, final period 8,000–12,000 s. Evalua-

tion of the data in the initial and final periods gives k =

1.97121 9 10-5 s-1, T? = 27.082220 K, Tini,e = 23.480469 K

and Tfin,s = 26.615263 K. Evaluation of the data in the main

period gives H = 103162.763 K s. With these data an adia-

batic temperature rise of DTad = 3.032963 K is obtained.

Random fluctuation of temperature data—initial and final

periods

The regression program returns a variance/covariance

matrix as follows:

Since this matrix is symmetric, u(a, b) = u(b, a), the

entries below the main diagonal were omitted. The units

are those for the respective squares or products inherited

from the units of the parameters.

From these variances/covariances and the basic data

above, the variance contribution is calculated according to

Eqs. 13–13b. In addition, the associated standard uncertainty

is calculated as the square root of the variance contribution.

Variance contribution: 7:55361� 10�12 K2

Standard uncertainty: 2:75 lK

Note: Throughout the examples section, standard

uncertainties relating to adiabatic temperature rise are

expressed in micro-Kelvin.

u2 T1ð Þ u T1; kð Þ u T1; Tini;e

� �
u T1; Tfin;s

� �
� u2 kð Þ u k; Tini;e

� �
u k; Tfin;s

� �
� � u2 Tini;e

� �
u Tini;e; Tfin;s

� �
� � � u2 Tfin;s

� �

2
6664

3
7775

¼

6:93932� 10�10 �4:02958� 10�15 �2:44630� 10�12 �2:36790� 10�10

� 3:78593� 10�20 1:21108� 10�16 1:24350� 10�16

� � 1:05259� 10�12 �1:37380� 10�14

� � � 1:11690� 10�12

2
6664

3
7775
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Random fluctuation of temperature data—main period

High-level period: 1,498 s, mH = 749 points; transition

period: 80 s, mT = 40 points, low-level period: the

remaining 2,422 s, mL = 1,211 points (including 276 s,

138 points in the beginning of the main period), see Fig. 3.

The high-level standard deviation was determined by fit-

ting a quadratic polynomial to the data of the high-level

period and calculating the standard deviation of the resid-

uals. The low-level standard deviation was determined in

the same way from the data of the low-level period. The

results are sMH = 440 9 10-6 K, sML = 19 9 10-6 K.

With Dt = 2 s and k from the basic data, the variance

contribution is calculated according to Eq. 16a.

Variance contribution: 2:5787� 10�13 K2

Standard uncertainty: 0:51 lK

Drift in temperature measurement

For the thermistor in use, positive and negative drift have

been observed, so the case A evaluation is used. The

maximum drift rate is Rmax = 3.45 9 10-9 K s-1. The

data series was subjected to simulated drift at the rate given

by the standard uncertainty u(R) derived from Rmax, and the

adiabatic temperature rise was calculated from the modi-

fied data series. Then the difference of the results obtained

from the modified data and the original data was calcu-

lated. The squared difference gives the variance contribu-

tion, while the absolute value of the difference itself gives

the associated standard uncertainty.

Variance contribution: 3:0795� 10�12 K2

Standard uncertainty: 1:75 lK

Change of cooling constant and convergence

temperature

Data from nine combustion runs including the current one

were evaluated using the dedicated procedure and the

alternative procedure. Table 4 presents the results.

The mean squared difference gives the variance

contribution.

Variance contribution: 1:75990� 10�7 K2

Standard uncertainty: 419:51 lK

Departure of sampled temperatures from bath averages

Based upon measurements carried out at the Laboratoire

national de métrologie d’essais, France (LNE) [17] and the

Physikalisch-Technische Bundesanstalt, Germany (PTB)

and upon a simulation study by E.ON Ruhrgas AG, Ger-

many, the maximum difference between the temperature at

the measurement site and the bath average was estimated as

14 mK. Therefore, a rectangular distribution between

limits Dmin = -14 mK and Dmax = 14 mK was used. The

time parameters for the error model are the same as used in

the model for the level of random fluctuations in the main

period.

As done for drift, the data series could be subjected to a

change of the main period data, at the level given by the

standard uncertainty u(D) derived from Dmax, in order to

calculate the adiabatic temperature rise from the modified

data series and determine the difference to the result

obtained from the original data series. However, in this case

a shortcut is available. The target difference was calculated

according to Eq. 25, with Dmax = 14 mK, Lact = 1,498 s

and Ltrans = 80 s. The squared difference gives the variance

contribution, while the absolute value of the difference

itself gives the associated standard uncertainty.

Variance contribution: 6:00500� 10�8 K2

Standard uncertainty: 245:05 lK
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Fig. 3 Fluctuation of main period temperature data (residuals) for a

combustion run

Table 4 Combustion run—comparison with alternative procedure

Combustion run DTad[ded]/K DTad[alt]/K Difference/lK

G538 3.041972 3.041286 686

G540 3.041349 3.041170 179

G541 3.042021 3.041716 306

G543 3.042357 3.043117 -760

G550 3.042424 3.042694 -270

G557 3.034083 3.033534 549

G564 3.034838 3.034673 165

G567 3.032958 3.032869 89

G576 3.033940 3.033967 -27
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Uncertainty on the limits of the main period

For the upper limit, the standard deviation of the values on

the plateau of candidate values was calculated. The squared

standard deviation gives the variance contribution. The

contribution of the uncertainty on the lower limit is

neglected.

Variance contribution: 4:38903� 10�12 K2

Standard uncertainty: 2:10 lK

Integration error

Using only the even sampling points t0, t2, t4, t6, … of the main

period, an integral value of H 2½ �
Simpson = 103162.747 K s was

obtained. Using this value and that of the original integral, the

integration error is calculated according to Eq. 32. The

squared error, multiplied by k2, gives the variance contribu-

tion, while the absolute value of the error, multiplied by k,

gives the associated standard uncertainty.

Variance contribution: 4:435� 10�16 K2

Standard uncertainty: 0:02 lK

Table 5 gives a summary of the uncertainty evaluation.

As there is no bias, there is no need to consider a bias

correction and different uncertainty estimates for corrected

and non-corrected values of the adiabatic temperature rise.

Calibration run

Basic data

Measurement series G571, initial period 0–4,000 s, main

period 4,000–8,000 s, final period 8,000–12,000 s. Evalu-

ation of the data in the initial and final periods gives

k = 1.97068 9 10-5 s-1, T? = 27.084013 K, Tini,e =

23.480251 K and Tfin,s = 26.617018 K. Evaluation of the

data in the main period gives H = 103194.399 K s. With

these data an adiabatic temperature rise of DTad =

3.035441 K is obtained.

Random fluctuation of temperature data—initial

and final periods

The regression program returns a variance/covariance

matrix as follows:

Table 5 Combustion run—contributions of the uncertainty sources

Uncertainty source Bias

in lK

Variance in K2 Standard

uncertainty in lK

Variance

fraction in %

Random fluctuation of temperature data—initial and final periods – 7.554 9 10-12 2.75 0.0032

Random fluctuation of temperature data—main period – 2.579 9 10-13 0.51 0.0001

Drift in temperature measurement – 3.080 9 10-12 1.75 0.0013

Change of cooling constant and convergence temperature – 1.760 9 10-7 419.51 74.5546

Departure of sampled temperatures from bath averages – 6.005 9 10-8 245.05 25.4390

Uncertainty on the limits of the main period – 4.389 9 10-12 2.10 0.0019

Integration error – 4.435 9 10-16 0.02 0.0000

Summation/combination – 2.361 9 10-7 485.86 100.0

Final result: DTad = DTad,corr = 3.032963 K; u(DTad) = u(DTad,corr) = 485.9 lK; b(DTad) = 0

u2 T1ð Þ u T1; kð Þ u T1; Tini;e

� �
u T1; Tfin;s

� �
� u2 kð Þ u k; Tini;e

� �
u k; Tfin;s

� �
� � u2 Tini;e

� �
u Tini;e; Tfin;s

� �
� � � u2 Tfin;s

� �

2
6664

3
7775

¼

6:50457� 10�10 �3:72110� 10�15 �1:90094� 10�12 �2:10459� 10�11

� 3:28072� 10�20 9:60863� 10�17 1:10468� 10�16

� � 8:37731� 10�13 �1:19484� 10�14

� � � 9:38175� 10�13

2
6664

3
7775
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Since this matrix is symmetric, u(a, b) = u(b, a), the

entries below the main diagonal were omitted. The units

are those for the respective squares or products inherited

from the units of the parameters.

From these variances/covariances and the basic data

above, the variance contribution is calculated according to

Eqs. 13–13b. In addition, the associated standard uncer-

tainty is calculated as the square root of the variance

contribution.

Variance contribution: 6:56294� 10�12 K2

Standard uncertainty: 2:56 lK

Random fluctuation of temperature data—main period

High-level period: 1,508 s, mH = 754 points; transition

period: 80 s, mT = 40 points, low-level period: the remain-

ing 2,412 s, mL = 1,206 points. The high-level and low-level

standard deviations were determined in the same manner as

in the combustion run: sMH = 400 9 10-6 K, sML = 19 9

10-6 K. Further calculation gives the following.

Variance contribution: 2:1450� 10�13 K2

Standard uncertainty: 0:46 lK

Drift in temperature measurement

Input data and evaluation procedure are the same as in the

combustion run.

Variance contribution: 3:0795� 10�12 K2

Standard uncertainty: 1:75 lK

Change of cooling constant and convergence temperature

Data from eight calibration runs including the current one

were evaluated using the dedicated procedure and the

alternative procedure. Table 6 presents the results.

The mean squared difference gives the variance

contribution.

Variance contribution: 1:00259� 10�7 K2

Standard uncertainty: 316:64 lK

Departure of sampled temperatures from bath averages

The evaluation procedure is the same as in the combustion

run. Again Dmax = 14 mK and Ltrans = 80 s, while Lact =

1,504 s.

Variance contribution: 6:04869� 10�8 K2

Standard uncertainty: 245:94 lK

Uncertainty on the limits of the main period

The evaluation procedure is the same as in the combustion

run.

Variance contribution: 1:21522� 10�11 K2

Standard uncertainty: 3:49 lK

Integration error

The evaluation procedure is the same as in the combustion

run.

Variance contribution: 8:7599� 10�16 K2

Standard uncertainty: 0:03 lK

Table 7 gives a summary of the uncertainty evaluation.

Correlation coefficients

Based upon the considerations in ‘‘Estimation of correla-

tion coefficients’’ section, preliminary estimates of corre-

lation coefficients are obtained as follows.

Combustion�combustion: r � 0:7

Calibration�calibration: r � 0:6

Combustion�calibration: r � 0:5

However, these estimates currently lack a sound basis.

Therefore, if safeguarding against the underestimation of

uncertainty is mandatory, r = 0 provides worst-case esti-

mates of the uncertainty of differences and quotients of

adiabatic temperature values from different runs, while

r = 1 does the same in the case of sums, mean values and

products.

Discussion

The uncertainty budget is almost completely dominated by

two uncertainty sources: the change of cooling constant

and convergence temperature and the departure of sampled

temperatures from bath averages. Somewhat unfortunately,

the uncertainty contributions for these two sources (and for

Table 6 Calibration run—comparison with alternative procedure

Calibration run DTad[ded]/K DTad[alt]/K Difference/lK

G524 3.014606 3.014426 180

G539 3.014027 3.013922 105

G542 3.015845 3.015558 286

G545 3.013877 3.014403 -526

G558 3.034117 3.033783 334

G563 3.033680 3.033679 1

G568 3.034440 3.034868 -427

G571 3.035441 3.035115 325
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the drift in temperature measurement as well) are based

upon rather rough estimates. Therefore, efforts will be

taken to improve the uncertainty analysis for these two

sources.

As far as possible, calculated standard uncertainties

should be compared with experimental standard deviations.

If the latter are considerably larger than the former,

something is definitely wrong with the uncertainty evalu-

ation: the uncertainty budget is incomplete, or uncertainty

components have been underestimated. If the calculated

standard uncertainties are larger than the experimental

standard deviations, this may be due to an overestimation

of uncertainty contributions. However, there are also other

possibilities: systematic effects dominating the uncertainty

budget or between-run correlation of errors from random

effects (see note below).

Repeatability conditions are best achieved for calibra-

tion runs, and the standard deviation of the heat capacity

obtained from 12 replicate runs is 4.2 9 10-5 relative,

while the standard uncertainty calculated in ‘‘Calibration

run’’ section is 13.2 9 10-5 relative. This amounts to a

factor of 3, by which the calculated standard uncertainty

exceeds the experimental standard deviation. There are two

possible sources for that: (i) overestimation of dominating

uncertainty contributions, and (ii) between-run correlation

of the errors resulting from dominating effects. In the

present case there is reason to believe that both sources are

operative. As explained in ‘‘Estimation of correlation

coefficients’’ section there is certainly a strong between-run

correlation of the effects of change of k and T? and pos-

sibly also some correlation of the effects of sampling error.

On the other hand, the uncertainty contributions for these

two sources are based upon rather rough and conservative

estimates. Future investigations will hopefully provide a

basis for improved estimates of the relevant uncertainty

contributions and correlation coefficients.

Note: In the presence of between-run correlation, the

experimental standard deviation s from replicate runs will

(on average) underestimate the ‘‘true’’ standard deviation

r. The expectation of s2 is given by E[s2] = (1 - r)r2,

where r is the average correlation coefficient. Thus, a ratio

of s/r = 3 corresponds to an average correlation coeffi-

cient of r & 0.9. However, considering that the dominat-

ing uncertainty contributions are only rough and

conservative estimates, this calculation merely supports the

idea that there may be strong between-run correlation.

Conclusions

A practical approach for evaluating the uncertainty of results

for determinations of the adiabatic (corrected) temperature

rise in isoperibol calorimetry was presented. The uncertainty

sources considered are fairly comprehensive, including

deviations from common model assumptions. The method-

ology is firmly based on the recommendations of the GUM

[11]. For this purpose, the standard approach based upon a

measurement equation, where the target quantity is expressed

as a function of the relevant input quantities which then take

the part of the uncertainty sources, was complemented by a

cause/effects approach. With the latter the uncertainty con-

tributions of systematic effects on temperature-rise data,

model error and evaluation error are determined directly from

the effect on the results for the adiabatic temperature rise. The

standard approach was used for propagating the parameter

variances and covariances due to random variability of the

temperature data. Computational implementation of the

uncertainty calculation is straightforward. Although devel-

oped for a specific modification of the Regnault–Pfaundler

method, the approach is sufficiently general to make it

applicable to virtually any other scheme for the evaluation of

temperature–time curves in temperature-rise calorimetry.

Table 7 Calibration run—contributions of the uncertainty sources

Uncertainty source Bias

in lK

Variance in K2 Standard

uncertainty in lK

Variance

fraction in %

Random fluctuation of temperature data—initial and final periods – 6.563 9 10-12 2.56 0.0041

Random fluctuation of temperature data—main period – 2.145 9 10-13 0.46 0.0001

Drift in temperature measurement – 3.080 9 10-12 1.75 0.0019

Change of cooling constant and convergence temperature – 1.003 9 10-7 316.64 62.3626

Departure of sampled temperatures from bath averages – 6.049 9 10-8 245.94 37.6237

Uncertainty on the limits of the main period – 1.215 9 10-11 3.49 0.0076

Integration error – 8.760 9 10-16 0.03 0.0000

Summation/combination – 1.611 9 10-7 400.96 100.0

Final result: DTad = DTad,corr = 3.035441 K; u(DTad) = u(DTad,corr) = 401.0 lK; b(DTad) = 0
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